Genetic Diversity and Selective Pressure in Hepatitis C Virus Genotypes 1–6: Significance for Direct-Acting Antiviral Treatment and Drug Resistance
نویسندگان
چکیده
Treatment with pan-genotypic direct-acting antivirals, targeting different viral proteins, is the best option for clearing hepatitis C virus (HCV) infection in chronically infected patients. However, the diversity of the HCV genome is a major obstacle for the development of antiviral drugs, vaccines, and genotyping assays. In this large-scale analysis, genome-wide diversity and selective pressure was mapped, focusing on positions important for treatment, drug resistance, and resistance testing. A dataset of 1415 full-genome sequences, including genotypes 1-6 from the Los Alamos database, was analyzed. In 44% of all full-genome positions, the consensus amino acid was different for at least one genotype. Focusing on positions sharing the same consensus amino acid in all genotypes revealed that only 15% was defined as pan-genotypic highly conserved (≥99% amino acid identity) and an additional 24% as pan-genotypic conserved (≥95%). Despite its large genetic diversity, across all genotypes, codon positions were rarely identified to be positively selected (0.23%-0.46%) and predominantly found to be under negative selective pressure, suggesting mainly neutral evolution. For NS3, NS5A, and NS5B, respectively, 40% (6/15), 33% (3/9), and 14% (2/14) of the resistance-related positions harbored as consensus the amino acid variant related to resistance, potentially impeding treatment. For example, the NS3 variant 80K, conferring resistance to simeprevir used for treatment of HCV1 infected patients, was present in 39.3% of the HCV1a strains and 0.25% of HCV1b strains. Both NS5A variants 28M and 30S, known to be associated with resistance to the pan-genotypic drug daclatasvir, were found in a significant proportion of HCV4 strains (10.7%). NS5B variant 556G, known to confer resistance to non-nucleoside inhibitor dasabuvir, was observed in 8.4% of the HCV1b strains. Given the large HCV genetic diversity, sequencing efforts for resistance testing purposes may need to be genotype-specific or geographically tailored.
منابع مشابه
Detection of Pre-treatment mutations leading to resistance to direct hepatitis C virus blocking drugs in patients with chronic hepatitis C
Background and objective: Human is the only host of hepatitis C virus. This virus has a positive single stranded RNA and lipoprotein envelop that has 7 confirmed genotypes. According to studies, genotypes 1a, 3a and 1b are the most common genotypes in Iran. No effective vaccine against HCV infection has been developed instead, advances in antiviral treatment using drugs that directly affect spe...
متن کاملNew treatment of hepatitis C (Direct Acting Antiviral)
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, with approximately 71 million chronically infected individuals worldwide. Clinical care for the patients with HCV-related liver disease has advanced considerably thanks to an enhanced understanding of the pathophysiology of the disease, and because of developments in diagnostic procedures and improvements in therapy an...
متن کاملUnderstanding Hepatitis C Virus Drug Resistance: Clinical Implications for Current and Future Regimens.
Viral resistance to direct-acting antiviral drugs may impact their effectiveness during treatment of hepatitis C virus (HCV) infection. Most data on HCV drug resistance concern genotypes 1 and 3. The clinical impact of resistance to HCV nonstructural protein 5A (NS5A) inhibitors and a practical approach to indications and methods for resistance testing are discussed.
متن کاملالگوهای جدید درمانی برای عفونت ویروس هپاتیت C
Hepatitis C virus (HCV) infection has affected approximately 180 million people across the world. In most cases, HCV-infection remains chronic, which expose patients at high risk of cirrhosis and hepatocellular carcinoma. The rates of disease incidence and mortality diminish as a result of successful treatment of HCV infection. Until the recent years, despite the associated toxicities and l...
متن کاملUpdate on hepatitis C virus resistance to direct-acting antiviral agents.
Resistance to direct-acting antiviral (DAA) agents against hepatitis C virus (HCV) infection is driven by the selection of mutations at different positions in the NS3 protease, NS5B polymerase and NS5A proteins. With the exception of NS5B nucleos(t)ide inhibitors, most DAAs possess a low genetic barrier to resistance, with significant cross-resistance between compounds belonging to the same fam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2015